Sciweavers

UAI
2000

Variational Relevance Vector Machines

14 years 26 days ago
Variational Relevance Vector Machines
The Support Vector Machine (SVM) of Vapnik [9] has become widely established as one of the leading approaches to pattern recognition and machine learning. It expresses predictions in terms of a linear combination of kernel functions centred on a subset of the training data, known as support vectors. Despite its widespread success, the SVM suffers from some important limitations, one of the most significant being that it makes point predictions rather than generating predictive distributions. Recently Tipping [8] has formulated the Relevance Vector Machine (RVM), a probabilistic model whose functional form is equivalent to the SVM. It achieves comparable recognition accuracy to the SVM, yet provides a full predictive distribution, and also requires substantially fewer kernel functions. The original treatment of the RVM relied on the use of type II maximum likelihood (the `evidence framework') to provide point estimates of the hyperparameters which govern model sparsity. In this pa...
Christopher M. Bishop, Michael E. Tipping
Added 01 Nov 2010
Updated 01 Nov 2010
Type Conference
Year 2000
Where UAI
Authors Christopher M. Bishop, Michael E. Tipping
Comments (0)