The paper summarizes some important results at the intersection of the fields of Bayesian statistics and stochastic simulation. Two statistical analysis issues for stochastic simulation are discussed in further detail from a Bayesian perspective. First, a review of recent work in input distribution selection is presented. Then, a new Bayesian formulation for the problem of output analysis for a single system is presented. A key feature is analyzing simulation output as a random variable whose parameters are an unknown function of the simulation’s inputs. The distribution of those parameters is inferred from simulation output via Bayesian response-surface methods. A brief summary of Bayesian inference and decision making is included for reference.
Stephen E. Chick