Many of the kinds of language model used in speech understanding suffer from imperfect modeling of intra-sentential contextual influences. I argue that this problem can be addressed by clustering the sentences in a training corpus automatically into subcorpora on the criterion of entropy reduction, and calculating separate language model parameters for each cluster. This kind of clustering offers a way to represent important contextual effects and can therefore significantly improve the performance of a model. It also offers a reasonably automatic means to gather evidence on whether a more complex, context-sensitive model using the same general kind of linguistic information is likely to reward the effort that would be required to develop it: if clustering improves the performance of a model, this proves the existence of further context dependencies, not exploited by the unclustered model. As evidence for these claims, I present results showing that clustering improves some models but...
David M. Carter