Sciweavers

NIPS
1996

Radial Basis Function Networks and Complexity Regularization in Function Learning

14 years 24 days ago
Radial Basis Function Networks and Complexity Regularization in Function Learning
In this paper we apply the method of complexity regularization to derive estimation bounds for nonlinear function estimation using a single hidden layer radial basis function network. Our approach differs from previous complexity regularization neural-network function learning schemes in that we operate with random covering numbers and l1 metric entropy, making it possible to consider much broader families of activation functions, namely functions of bounded variation. Some constraints previously imposed on the network parameters are also eliminated this way. The network is trained by means of complexity regularization involving empirical risk minimization. Bounds on the expected risk in terms of the sample size are obtained for a large class of loss functions. Rates of convergence to the optimal loss are also derived.
Adam Krzyzak, Tamás Linder
Added 02 Nov 2010
Updated 02 Nov 2010
Type Conference
Year 1996
Where NIPS
Authors Adam Krzyzak, Tamás Linder
Comments (0)