Cooperative games provide an appropriate framework for fair and stable resource allocation in multiagent systems. This paper focusses on monotone cooperative games, a class which comprises a variety of games that have enjoyed special attention within AI, in particular, skill games, connectivity games, flow games, voting games, and matching games. Given a threshold, each monotone cooperative game naturally corresponds to a simple game. The core of a threshold version may be empty, even if that is not the case in the monotonic game itself. For each of the subclasses of monotonic games mentioned above, we conduct a computational analysis of problems concerning some relaxations of the core such as the least-core and the cost of stability. It is shown that threshold versions of monotonic games are generally at least as hard to handle computationally. We also introduce the length of a simple game as the size of the smallest winning coalition and study its computational complexity in various...