In large wireless sensor networks, the problem of assigning radio frequencies to sensing agents such that no two connected sensors are assigned the same value (and will thus interfere with one another) is a major challenge. To tackle this problem, we develop a novel decentralised coordination algorithm that activates only a subset of the deployed agents, subject to the connectivity graph of this subset being provably 3-colourable in linear time, hence allowing the use of a simple decentralised graph colouring algorithm. Crucially, while doing this, our algorithm maximises the sensing coverage achieved by the selected sensing agents, which is given by an arbitrary non-decreasing submodular set function. We empirically evaluate our algorithm by benchmarking it against a centralised greedy algorithm and an optimal one, and show that the selected sensing agents manage to achieve 90% of the coverage provided by the optimal algorithm, and 85% of the coverage provided by activating all senso...
Ruben Stranders, Alex Rogers, Nicholas R. Jennings