A persistent concern of wireless sensors is the power consumption required for communication, which presents a significant adoption hurdle for practical ubiquitous computing applications. This work explores the use of the home powerline as a large distributed antenna capable of receiving signals from ultra-low-power wireless sensor nodes and thus allowing nodes to be detected at ranges that are otherwise impractical with traditional over-the-air reception. We present the design and implementation of small ultra-low-power 27 MHz sensor nodes that transmit their data by coupling over the powerline to a single receiver attached to the powerline in the home. We demonstrate the ability of our general purpose wireless sensor nodes to provide whole-home coverage while consuming less than 1 mW of power when transmitting (65 W consumed in our custom CMOS transmitter). This is the lowest power transmitter to date compared to those found in traditional whole-home wireless systems. Author Keyword...
Gabe Cohn, Erich P. Stuntebeck, Jagdish Pandey, Br