Rigorous runtime analyses of evolutionary algorithms (EAs) mainly investigate algorithms that use elitist selection methods. Two algorithms commonly studied are Randomized Local Search (RLS) and the (1+1) EA and it is well known that both optimize any linear pseudoBoolean function on n bits within an expected number of O(n log n) fitness evaluations. In this paper, we analyze variants of these algorithms that use fitness proportional selection. A well-known method in analyzing the local changes in the solutions of RLS is a reduction to the gambler’s ruin problem. We extend this method in order to analyze the global changes imposed by the (1+1) EA. By applying this new technique we show that with high probability using fitness proportional selection leads to an exponential optimization time for any linear pseudo-Boolean function with nonzero weights. Even worse, all solutions of the algorithms during an exponential number of fitness evaluations differ with high probability in li...