While coevolution has many parallels to natural evolution, methods other than those based on evolutionary principles may be used in the interactive fitness setting. In this paper we present a generalization of coevolution to co-optimization which allows arbitrary black-box function optimization techniques to be used in a coevolutionary like manner. We find that the co-optimization versions of gradient ascent and simulated annealing are capable of outperforming the canonical coevolutionary algorithm. We also hypothesize that techniques which employ non-population based selection mechanisms are less sensitive to disengagement. Categories and Subject Descriptors
Travis C. Service, Daniel R. Tauritz