Maintaining diversity is important for the performance of evolutionary algorithms. Diversity mechanisms can enhance global exploration of the search space and enable crossover to find dissimilar individuals for recombination. We focus on the global exploration capabilities of mutation-based algorithms. Using a simple bimodal test function and rigorous runtime analyses, we compare well-known diversity mechanisms like deterministic crowding, fitness sharing, and others with a plain algorithm without diversification. We show that diversification is necessary for global exploration, but not all mechanisms succeed in finding both optima efficiently. Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity General Terms: Theory, Algorithms, Performance