Sciweavers

ICML
2010
IEEE

Structured Output Learning with Indirect Supervision

14 years 19 days ago
Structured Output Learning with Indirect Supervision
We present a novel approach for structure prediction that addresses the difficulty of obtaining labeled structures for training. We observe that structured output problems often have a companion learning problem of determining whether a given input possesses a good structure. For example, the companion problem for the part-ofspeech (POS) tagging task asks whether a given sequence of words has a corresponding sequence of POS tags that is "legitimate". While obtaining direct supervision for structures is difficult and expensive, it is often very easy to obtain indirect supervision from the companion binary decision problem. In this paper, we develop a large margin framework that jointly learns from both direct and indirect forms of supervision. Our experiments exhibit the significant contribution of the easy-toget indirect binary supervision on three important NLP structure learning problems.
Ming-Wei Chang, Vivek Srikumar, Dan Goldwasser, Da
Added 09 Nov 2010
Updated 09 Nov 2010
Type Conference
Year 2010
Where ICML
Authors Ming-Wei Chang, Vivek Srikumar, Dan Goldwasser, Dan Roth
Comments (0)