Modern communication technologies are steadily advancing the physical layer (PHY) data rate in wireless LANs, from hundreds of Mbps in current 802.11n to over Gbps in the near future. As PHY data rates increase, however, the overhead of media access control (MAC) progressively degrades data throughput efficiency. This trend reflects a fundamental aspect of the current MAC protocol, which allocates the channel as a single resource at a time. This paper argues that, in a high data rate WLAN, the channel should be divided into separate subchannels whose width is commensurate with PHY data rate and typical frame size. Multiple stations can then contend for and use subchannels simultaneously according to their traffic demands, thereby increasing overall efficiency. We introduce FICA, a fine-grained channel access method that embodies this approach to media access using two novel techniques. First, it proposes a new PHY architecture based on OFDM that retains orthogonality among subchannels...