This paper proposes a new texture classifier based on the Quaternionic Wavelet Transform (QWT). This recent transform separates the informations contained in the image better than a classical wavelet transform (DWT), and provides a multiscale image analysis which coefficients are 2D analytic, with one near-shift invariant magnitude and a phase, that is made of three angles. The interpretation and use of the QWT coefficients, especially the phase, are discussed, and we present a texture classifier using both the QWT magnitude and the QWT phase of images. Our classifier performs a better recognition rate than a standard wavelet based classifier.