We consider the estimation of a sparse parameter vector from measurements corrupted by white Gaussian noise. Our focus is on unbiased estimation as a setting under which the difficulty of the problem can be quantified analytically. We show that there are infinitely many unbiased estimators but none of them has uniformly minimum mean-squared error. We then provide lower and upper bounds on the Barankin bound, which describes the performance achievable by unbiased estimators. These bounds are used to predict the threshold region of practical estimators.