Sciweavers

ICASSP
2010
IEEE

Word confidence calibration using a maximum entropy model with constraints on confidence and word distributions

13 years 11 months ago
Word confidence calibration using a maximum entropy model with constraints on confidence and word distributions
It is widely known that the quality of confidence measure is critical for speech applications. In this paper, we present our recent work on improving word confidence scores by calibrating them using a small set of calibration data when only the recognized word sequence and associated raw confidence scores are made available. The core of our technique is the maximum entropy model with distribution constraints which naturally and effectively make use of the word distribution, the raw confidence-score distribution, and the context information. We demonstrate the effectiveness of our approach by showing that it can achieve relative 38% mean square error (MSE), 39% negative normalized likelihood (NNLL), and 23% equal error rate (EER) reduction on a voice mail transcription data set and relative 35% MSE, 45% NNLL, and 35% EER reduction on a command and control data set.
Dong Yu, Shizhen Wang, Jinyu Li, Li Deng
Added 06 Dec 2010
Updated 06 Dec 2010
Type Conference
Year 2010
Where ICASSP
Authors Dong Yu, Shizhen Wang, Jinyu Li, Li Deng
Comments (0)