We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In particular, using the CQIFFT algorithm with conservative transcription and removal of short duration notes, we are able to distinguish between 6 different temperaments of harpsichord recordings with 96% accuracy (100% for synthetic data).