Sciweavers

ICASSP
2010
IEEE

On the tracking performance of combinations of least mean squares and recursive least squares adaptive filters

14 years 20 days ago
On the tracking performance of combinations of least mean squares and recursive least squares adaptive filters
Combinations of adaptive filters have attracted attention as a simple solution to improve filter performance, including tracking properties. In this paper, we consider combinations of LMS and RLS filters, and study their performance for tracking time-varying solutions. We show that a combination of two filters from the same family (i.e., two LMS or two RLS filters) cannot improve the performance over that of a single filter of the same type with optimal selection of the step size (or forgetting factor). However, combining LMS and RLS filters it is possible to simultaneously outperform the optimum LMS and RLS filters. In other words, combination schemes can achieve smaller errors than optimally adjusted individual filters. Experimental work in a plant identification setup corroborates the validity of our results.
Vitor H. Nascimento, Magno T. M. Silva, Luis Anton
Added 06 Dec 2010
Updated 06 Dec 2010
Type Conference
Year 2010
Where ICASSP
Authors Vitor H. Nascimento, Magno T. M. Silva, Luis Antonio Azpicueta-Ruiz, Jerónimo Arenas-García
Comments (0)