We propose a novel technique that significantly improves the performance of oriented chamfer matching on images with cluttered background. Different to other matching methods, which only measures how well a template fits to an edge map, we evaluate the score of the template in comparison to auxiliary contours, which we call normalizers. We utilize AdaBoost to learn a Normalized Oriented Chamfer Distance (NOCD). Our experimental results demonstrate that it boosts the detection rate of the oriented chamfer distance. The simplicity and ease of training of NOCD on a small number of training samples promise that it can replace chamfer distance and oriented chamfer distance in any template matching application.