Sciweavers

ICA
2010
Springer

Double Sparsity: Towards Blind Estimation of Multiple Channels

13 years 11 months ago
Double Sparsity: Towards Blind Estimation of Multiple Channels
We propose a framework for blind multiple filter estimation from convolutive mixtures, exploiting the time-domain sparsity of the mixing filters and the disjointness of the sources in the time-frequency domain. The proposed framework includes two steps: (a) a clustering step, to determine the frequencies where each source is active alone; (b) a filter estimation step, to recover the filter associated to each source from the corresponding incomplete frequency information. We show how to solve the filter estimation step (b) using convex programming, and we explore numerically the factors that drive its performance. Step (a) remains challenging, and we discuss possible strategies that will be studied in future work. Key words: blind filter estimation, sparsity, convex optimisation
Prasad Sudhakar, Simon Arberet, Rémi Gribon
Added 07 Dec 2010
Updated 07 Dec 2010
Type Conference
Year 2010
Where ICA
Authors Prasad Sudhakar, Simon Arberet, Rémi Gribonval
Comments (0)