This survey is concerned with the size of perfect formulations for combinatorial optimization problems. By "perfect formulation", we mean a system of linear inequalities that describes the convex hull of feasible solutions, viewed as vectors. Natural perfect formulations often have a number of inequalities that is exponential in the size of the data needed to describe the problem. Here we are particularly interested in situations where the addition of a polynomial number of extra variables allows a formulation with a polynomial number of inequalities. Such formulations are called "compact extended formulations". We survey various tools for deriving and studying extended formulations, such as Fourier's procedure for projection, Minkowski-Weyl's theorem, Balas' theorem for the union of polyhedra, Yannakakis' theorem on the size of an extended formulation, dynamic programming, and variable discretization. For each tool that we introduce, we present...