Representing and reasoning about time dependent information is a key research issue in many areas of computer science and artificial intelligence. One of the best known and widely used formalisms for representing interval-based qualitative temporal information is Allen's interval algebra (IA). The fundamental reasoning task in IA is to find a scenario that is consistent with the given information. This problem is in general NP-complete. In this paper, we investigate how an interval-based representation, or IA network, can be encoded into a propositional formula of Boolean variables and/or predicates in decidable theories. Our task is to discover whether satisfying such a formula can be more efficient than finding a consistent scenario for the original problem. There are two basic approaches to modelling an IA network: one represents the relations between intervals as variables and the other represents the end-points of each interval as variables. By combining these two approaches...