Sciweavers

ARSCOM
2008

Greedy Defining Sets in Latin Squares

13 years 11 months ago
Greedy Defining Sets in Latin Squares
A Greedy Defining Set is a set of entries in a Latin square with the property that when the square is systematically filled in with a greedy algorithm, the greedy algorithm succeeds. Let g(n) be the smallest Greedy Defining Set for any Latin square of order n. We give theorems on the upper bounds of g(n) and a table listing upper bounds of g(n) for small values of n. For a circulant Latin square, we find that the size of the smallest Greedy Defining Set is (n(n-1) 6 .
Manouchehr Zaker
Added 08 Dec 2010
Updated 08 Dec 2010
Type Journal
Year 2008
Where ARSCOM
Authors Manouchehr Zaker
Comments (0)