This paper investigates how self-organisation might be harnessed for the manipulation and control of calcium oscillations. Calcium signalling mechanisms are responsible for a number of important functions within biological systems, such as fertilization, secretion, contraction, neuronal signalling and learning. In this paper, calcium oscillations are investigated as a biological periodic process. Within biological systems such periodic behaviour is one of the outcomes from self-organisation. The understanding of periodic processes in living systems can enable more accurate diagnosis and physiologically suitable clinical therapies to be proposed, for diseases such as cancer, epilepsy, cardiac diseases and other dynamic diseases. In this paper these ideas are investigated by means of the calcium-induced calcium release (CICR) model and a number of representative simulations of intra and inter-cellular calcium oscillations are used to illustrate the manipulation and control of these osci...
Cristina Costa Santini, Andy M. Tyrrell