This paper presents an evaluation of the design decisions made in four state-of-the-art constraint solvers; Choco, ECLiPSe, Gecode, and Minion. To assess the impact of design decisions, instances of the five problem classes n-Queens, Golomb Ruler, Magic Square, Social Golfers, and Balanced Incomplete Block Design are modelled and solved with each solver. The results of the experiments are not meant to give an indication of the performance of a solver, but rather investigate what influence the choice of algorithms and data structures has. The analysis of the impact of the design decisions focuses on the different ways of memory management, behaviour with increasing problem size, and specialised algorithms for specific types of variables. It also briefly considers other, less significant decisions.