Due to implementation constraints the XOR operation is widely used in order to combine plaintext and key bit-strings in secretkey block ciphers. This choice directly induces the classical version of the differential attack by the use of XOR-kind differences. While very natural, there are many alternatives to the XOR. Each of them inducing a new form for its corresponding differential attack (using the appropriate notion of difference) and therefore block-ciphers need to use S-boxes that are resistant against these nonstandard differential cryptanalysis. In this contribution we study the functions that offer the best resistance against a differential attack based on a finite field multiplication. We also show that in some particular cases, there are robust permutations which offers the best resistant against both multiplication and exponentiation based differential attacks. We call them doubly perfect nonlinear permutations.