Abstract--Two types of noise-free relay cascades are investigated. Networks where a source communicates with a distant receiver via a cascade of half-duplex constrained relays, and networks where not only the source but also a single relay node intends to transmit information to the same destination. We introduce two relay channel models, capturing the half-duplex constraint, and within the framework of these models capacity is determined for the first network type. It turns out that capacity is significantly higher than the rates which are achievable with a straightforward time-sharing approach. A capacity achieving coding strategy is presented based on allocating the transmit and receive time slots of a node in dependence of the node's previously received data. For the networks of the second type, an upper bound to the rate region is derived from the cut-set bound. Further, achievability of the cut-set bound in the single relay case is shown given that the source rate exceeds a ...