Sciweavers

CORR
2010
Springer

Exact Localization and Superresolution with Noisy Data and Random Illumination

14 years 28 days ago
Exact Localization and Superresolution with Noisy Data and Random Illumination
This paper studies the problem of exact localization of multiple objects with noisy data. The crux of the proposed approach consists of random illumination. Two recovery methods are analyzed: the Lasso and the One-Step Thresholding (OST). For independent random probes, it is shown that both recovery methods can localize exactly s = O(m), up to a logarithmic factor, objects where m is the number of data. Moreover, when the number of random probes is large the Lasso with random illumination has a performance guarantee for superresolution, beating the Rayleigh resolution limit. Numerical evidence confirms the predictions and indicates that the performance of the Lasso is superior to that of the OST for the proposed set-up with random illumination.
Albert Fannjiang
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2010
Where CORR
Authors Albert Fannjiang
Comments (0)