Modal logics are widely used in computer science. The complexity of modal satisfiability problems has been investigated since the 1970s, usually proving results on a case-by-case basis. We prove a very general classification for a wide class of relevant logics: Many important subclasses of modal logics can be obtained by restricting the allowed models with first-order Horn formulas. We show that the satisfiability problem for each of these logics is either NP-complete or PSPACE-hard, and exhibit a simple classification criterion. Further, we prove matching PSPACE upper bounds for many of the PSPACE-hard logics.