Identification of defective members of large populations has been widely studied in the statistics community under the name of group testing. It involves grouping subsets of items into different pools and detecting defective members based on the set of test results obtained for each pool. In a classical noiseless group testing setup, it is assumed that the sampling procedure is fully known to the reconstruction algorithm, in the sense that the existence of a defective member in a pool results in the test outcome of that pool to be positive. However, this may not be always a valid assumption in some cases of interest. In particular, we consider the case where the defective items in a pool can become independently inactive with a certain probability. Hence, one may obtain a negative test result in a pool despite containing some defective items. As a result, any sampling and reconstruction method should be able to cope with two different types of uncertainty, i.e., the unknown set of def...