This paper presents a novel methodology to develop scheduling algorithms. The scheduling problem is phrased as a control problem, and control-theoretical techniques are used to design a scheduling algorithm that meets specific requirements. Unlike most approaches to feedback scheduling, where a controller integrates a "basic" scheduling algorithm and dynamically tunes its parameters and hence its performances, our methodology essentially reduces the design of a scheduling algorithm to the synthesis of a controller that closes the feedback loop. This approach allows the re-use of control-theoretical techniques to design efficient scheduling algorithms; it frames and solves the scheduling problem in a general setting; and it can naturally tackle certain peculiar requirements such as robustness and dynamic performance tuning. A few experiments demonstrate the feasibility of the approach on a real-time benchmark.
Carlo A. Furia, Alberto Leva, Martina Maggio, Paol