The unsplittable flow problem is one of the most extensively studied optimization problems in the field of networking. An instance of it consists of an edge capacitated graph and a set of connection requests, each of which is associated with source and target vertices, a demand, and a value. The objective is to route a maximum value subset of requests subject to the edge capacities. It is a well known fact that as the capacities of the edges are larger with respect to the maximal demand among the requests, the problem can be approximated better. In particular, it is known that for sufficiently large capacities, the integrality gap of the corresponding integer linear program becomes 1 + , which can be matched by an algorithm that utilizes the randomized rounding technique. In this paper, we focus our attention on the large capacities unsplittable flow problem in a game theoretic setting. In this setting, there are selfish agents, which control some of the requests characteristics, and ...