Deterministic graph grammars generate regular graphs, that form a structural extension of configuration graphs of pushdown systems. In this paper, we study a probabilistic extension of regular graphs obtained by labelling the terminal arcs of the graph grammars by probabilities. Stochastic properties of these graphs are expressed using PCTL, a probabilistic extension of computation tree logic. We present here an algorithm to perform approximate verification of PCTL formulae. Moreover, we prove that the exact model-checking problem for PCTL on probabilistic regular graphs is undecidable, unless restricting to qualitative properties. Our results generalise those of [8], on probabilistic pushdown automata, using similar methods combined with graph grammars techniques.