A 60 GHz wireless Gigabit Ethernet (G.E.) communication system capable of near gigabit data rate has been developed at IETR. The realized system covers 2 GHz available bandwidth. This paper describes the design and realization of the overall system including the baseband (BB), intermediate frequency (IF) and radiofrequency (RF) blocks. A differential binary shift keying (DBPSK) modulation and a differential demodulation are adopted at IF. In the BB processing block, an original byte/frame synchronization technique is designed to provide a small value of the preamble false alarm and missing probabilities. For the system performances, two different real scenarios are investigated: measurements carried out in a large gym and in hallways. Bit error rate (BER) measurements have been performed in different configurations: with/without RS (255, 239) coding, with frame synchronization using 32/64 bits preambles. As shown by simulation, the 64 bits preamble provides sufficient robustness and im...