Algorithmic pricing is the computational problem that sellers (e.g., in supermarkets) face when trying to set prices for their items to maximize their profit in the presence of a known demand. Guruswami et al. (2005) propose this problem and give logarithmic approximations (in the number of consumers) for the unit-demand and single-parameter cases where there is a specific set of consumers and their valuations for bundles are known precisely. Subsequently several versions of the problem have been shown to have poly-logarithmic inapproximability. This problem has direct ties to the important open question of better understanding the Bayesian optimal mechanism in multi-parameter agent settings; however, for this purpose approximation factors logarithmic in the number of agents are inadequate. It is therefore of vital interest to consider special cases where constant approximations are possible. We consider the unit-demand variant of this pricing problem. Here a consumer has a valuation ...
Shuchi Chawla, Jason D. Hartline, Robert Kleinberg