In this work, we consider a distributed source coding problem with a joint distortion criterion depending on the sources and the reconstruction. This includes as a special case the problem of computing a function of the sources to within some distortion and also the classic Slepian-Wolf problem [12], Berger-Tung problem [5], Wyner-Ziv problem [4], Yeung-Berger problem [6] and the Ahlswede-Korner-Wyner problem [3], [13]. While the prevalent trend in information theory has been to prove achievability results using Shannon's random coding arguments, using structured random codes offer rate gains over unstructured random codes for many problems. Motivated by this, we present a new achievable ratedistortion region (an inner bound to the performance limit) for this problem for discrete memoryless sources based on "good" structured random nested codes built over abelian groups. We demonstrate rate gains for this problem over traditional coding schemes using random unstructured ...
Dinesh Krithivasan, S. Sandeep Pradhan