The number of matchings of a graph G is an important graph parameter in various contexts, notably in statistical physics (dimer-monomer model). Following recent research on graph parameters of this type in connection with self-similar, fractal-like graphs, we study the asymptotic behavior of the number of matchings in families of self-similar graphs that are constructed by a very general replacement procedure. Under certain conditions on the geometry of the graphs, we are able to prove that the number of matchings generally follows a doubly exponential growth. The proof depends on an independence theorem for the number of matchings that has been used earlier to treat the special case of Sierpi