Sciweavers

DATAMINE
2010

Using background knowledge to rank itemsets

13 years 11 months ago
Using background knowledge to rank itemsets
Assessing the quality of discovered results is an important open problem in data mining. Such assessment is particularly vital when mining itemsets, since commonly many of the discovered patterns can be easily explained by background knowledge. The simplest approach to screen uninteresting patterns is to compare the observed frequency against the independence model. Since the parameters for the independence model are the column margins, we can view such screening as a way of using the column margins as background knowledge. In this paper we study techniques for more flexible approaches for infusing background knowledge. Namely, we show that we can efficiently use additional knowledge such as row margins, lazarus counts, and bounds of ones. We demonstrate that these statistics describe forms of data that occur in practice and have been studied in data mining. To infuse the information efficiently we use a maximum entropy approach. In its general setting, solving a maximum entropy model ...
Nikolaj Tatti, Michael Mampaey
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2010
Where DATAMINE
Authors Nikolaj Tatti, Michael Mampaey
Comments (0)