This paper deals with generic transformations from ID-based key encapsulation mechanisms (IBKEM) to hybrid public-key encryption (PKE). The best generic transformation known until now is by Boneh and Katz and requires roughly 704-bit overhead in the ciphertext. We present new generic transformations that are applicable to partitioned IBKEMs. A partitioned IBKEM is an IBKEM that provides some extra structure. Such IBKEMs are quite natural and in fact nearly all known IBKEMs have this additional property. Our first transformation yields chosen-ciphertext secure PKE schemes from selective-ID secure partitioned IBKEMs with a 256-bit overhead in ciphertext size plus one extra exponentiation in encryption/decryption. As the central tool a Chameleon Hash function is used to map the identities. We also propose other methods to remove the use of Chameleon Hash, which may be of independent technical interest. Applying our transformations to existing IBKEMs we propose a number of novel PKE schem...