Sorting models consist in assigning alternatives evaluated on several criteria to ordered categories. To implement such models it is necessary to set the values of the preference parameters used in the model. Rather than fixing the values of these parameters directly, a usual approach is to infer these values from assignment examples provided by the decision maker (DM), i.e., alternatives for which (s)he specifies a required category. However, assignment examples provided by DMs can be inconsistent, i.e., may not match the sorting model. In such situations, it is necessary to support the DMs in the resolution of this inconsistency. In this paper, we extend algorithms from Mousseau et al. (2003) that calculate different ways to remove assignment examples so that the information can be represented in the sorting model. The extension concerns the possibility to relax (rather than to delete) assignment examples. These algorithms incorporate information about the confidence attached to each...
Vincent Mousseau, Luis C. Dias, José Rui Fi