In this work, we introduce a new framework able to deal with a reasoning that is at the same time non monotonic and uncertain. In order to take into account a certainty level associated to each piece of knowledge, we use possibility theory to extend the non monotonic semantics of stable models for logic programs with default negation. By means of a possibility distribution we define a clear semantics of such programs by introducing what is a possibilistic stable model. We also propose a syntactic process based on a fix-point operator to compute these particular models representing the deductions of the program and their certainty. Then, we show how