A weakness of classical Markov decision processes (MDPs) is that they scale very poorly due to the flat state-space representation. Factored MDPs address this representational problem by exploiting problem structure to specify the transition and reward functions of an MDP in a compact manner. However, in general, solutions to factored MDPs do not retain the structure and compactness of the problem representation, forcing approximate solutions, with approximate linear programming (ALP) emerging as a promising MDPapproximation technique. To date, most ALP work has focused on the primal-LP formulation, while the dual LP, which forms the basis for solving constrained Markov problems, has received much less attention. We show that a straightforward linear approximation of the dual optimization variables is problematic, because some of the required computations cannot be carried out efficiently. Nonetheless, we develop a composite approach that symmetrically approximates the primal and dual...
Dmitri A. Dolgov, Edmund H. Durfee