The aim of this paper is to apply the concept of robust optimization introduced by Bel-Tal and Nemirovski to the portfolio selection problems based on multi-stage scenario trees. The objective of our portfolio selection is to maximize an expected utility function value (or equivalently, to minimize an expected disutility function value) as in a classical stochastic programming problem, except that we allow for ambiguities to exist in the probability distributions along the scenario tree. We show that such a problem can be formulated as a finite convex program in the conic form, on which general convex optimization techniques can be applied. In particular, if there is no short-selling, and the disutility function takes the form of semi-variance downside risk, and all the parameter ambiguity sets are ellipsoidal, then the problem becomes a second order cone program, thus tractable. We use SeDuMi to solve the resulting robust portfolio selection problem, and the simulation results show t...