An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of Hamming graphs, products of complete graphs, are considered. Upper and lower bounds on the acyclic chromatic number of Hamming graphs are given. Key words. acyclic coloring, Cartesian product of graphs, distance 2 coloring, Hamming graph
Robert E. Jamison, Gretchen L. Matthews