We investigate the existence of edge-magic labellings of countably infinite graphs by abelian groups. We show for that for a large class of abelian groups, including the integers Z, there is such a labelling whenever the graph has an infinite set of disjoint edges. A graph without an infinite set of disjoint edges must be some subgraph of H + I, where H is some finite graph and I is a countable set of isolated vertices. Using power series of rational functions, we show that any edge-magic Z-labelling of H + I has almost all vertex labels making up pairs of half-modulus classes. We also classify all possible edge-magic Z-labellings of H +I under the assumption that the vertices of the finite graph are labelled consecutively.
Nicholas J. Cavenagh, Diana Combe, Adrian M. Nelso