We generalize the Ihara-Selberg zeta function to hypergraphs in a natural way. Hashimoto's factorization results for biregular bipartite graphs apply, leading to exact factorizations. For (d, r)-regular hypergraphs, we show that a modified Riemann hypothesis is true if and only if the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Sol
Christopher K. Storm