Abstract--In this paper, we propose a decentralized sensor network scheme capable to reach a globally optimum maximum-likelihood (ML) estimate through self-synchronization of nonlinearly coupled dynamical systems. Each node of the network is composed of a sensor and a first-order dynamical system initialized with the local measurements. Nearby nodes interact with each other exchanging their state value, and the final estimate is associated to the state derivative of each dynamical system. We derive the conditions on the coupling mechanism guaranteeing that, if the network observes one common phenomenon, each node converges to the globally optimal ML estimate. We prove that the synchronized state is globally asymptotically stable if the coupling strength exceeds a given threshold. Acting on a single parameter, the coupling strength, we show how, in the case of nonlinear coupling, the network behavior can switch from a global consensus system to a spatial clustering system. Finally, we s...