We consider the multiple-access communication problem in a distributed setting for both the additive white Gaussian noise channel and the discrete memoryless channel. We propose a scheme called Distributed Rate Splitting to achieve the optimal rates allowed by information theory in a distributed manner. In this scheme, each real user creates a number of virtual users via a power/rate splitting mechanism in the M-user Gaussian channel or via a random switching mechanism in the M-user discrete memoryless channel. At the receiver, all virtual users are successively decoded. Compared with other multiple-access techniques, Distributed Rate Splitting (DRS) can be implemented with lower complexity and less coordination. Furthermore, in a symmetric setting, we show that the rate tuple achieved by this scheme converges to the maximum equal rate point allowed by the information-theoretic bound as the number of virtual users per real user tends to infinity. When the capacity regions are asymmetri...
Jian Cao, Edmund M. Yeh