A common technique used to minimize I/O in data intensive applications is data declustering over parallel servers. This technique involves distributing data among several disks so as to parallelize query retrieval and thus, improve performance. We focus on optimizing access to large spatial data, and the most common type of queries on such data, i.e., range queries. An optimal declustering scheme is one in which the processing for all range queries is balanced uniformly among the available disks. It has been shown that single copy based declustering schemes are non-optimal for range queries. In this paper, we integrate replication in conjunction with parallel disk declustering for efficient processing of range queries. We note that replication is largely used in database applications for several purposes like load balancing, fault tolerance and availability of data. We propose theoretical foundations for replicated declustering and propose a class of replicated declustering schemes, p...