Type-2 fuzzy sets, which are characterized by membership functions (MFs) that are themselves fuzzy, have been attracting interest. This paper focuses on advancing the understanding of interval type-2 fuzzy logic controllers (FLCs). First, a type-2 FLC is evolved using Genetic Algorithms (GAs). The type-2 FLC is then compared with another three GA evolved type-1 FLCs that have different design parameters. The objective is to examine the amount by which the extra degrees of freedom provided by antecedent type-2 fuzzy sets is able to improve the control performance. Experimental results show that better control can be achieved using a type-2 FLC with fewer fuzzy sets/rules so one benefit of type-2 FLC is a lower trade-off between modeling accuracy and interpretability. r 2006 Elsevier Ltd. All rights reserved.