It is reasonable to assume that quantum computations take place under the control of the classical world. For modelling this standard situation, we introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing machine with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and quantum measurements are allowed. We show that any classical Turing machine is simulated by a CQTM without loss of efficiency. Furthermore, we show that any k-tape CQTM is simulated by a 2-tape CQTM with a quadratic loss of efficiency. The gap between classical and quantum computations which was already pointed out in the framework of measurement-based quantum computation (see [14]) is confirmed in the general case of classically-controlled quantum computation. In order to appreciate the similarity between programming classical Turing machines and programming CQTM, some examples of CQTM will be g...